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The Complexity of Routing in Clos Permutation Networks 
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Absmzct-A lower bound on the amount of information necessary to 
compute the switch settings for a three-stage Clos network is derived. The 
bound is derived by considering the effect of a family of permutations, 
called balanced multiloops, on the settings of the switches of a Clos 
network. By carefully selecting these permutations, it is proven that there 
exists at least one switch in each stage whose setting depends upon at 
least (k - 3)(m/2 + 1)/2 assignments in the permutations to be routed 
for k 2 4 where m is the number of center-stage switches and k is the 
number of input and output-stage switches. It is also proven that the 
setting of the input stage depends on at least m - 1 assignments. Lower 
bounds on the routing time of a three-stage Clos network on a variety 
of machine models follow immediately from these results. In particular, 
any constant fan-in implementation of any routing algorithm for such a 
network should have a time lower bound of n(logmk). 

Index Terms-Clos network, edge-coloring, information complexity of 
routing, lower bounds, network routing, permutation network, routing 
complexity. 

I. INTRODUCTION 
This paper examines the information complexity of routing in 

Clos permutation networks. Such networks are typically formed 
recursively from smaller networks, and have widely been investigated 
as connectors in telephone switching [5] ,  [22], [28] and parallel 
computer systems [61, [lo], [23]. 

Formally, a three-stage Clos permutation network, henceforth to 
be called a Clos network, is defined in terms of two parameters, 
m and k where m is the number of inputs to each of the switches 
in the outer stages, and k is the number of inputs to each of the 
switches in the center stage [8], [5]. The total number of inputs 
(outputs) to the network is given by mk and will be denoted by n. 
The interconnections between consecutive stages are such that there 
exists exactly one link between every center- and outer-stage switch. 
Consequently, the parameter k also specifies the number of switches 
in each of the outer stages while m is the number of switches in 
the center stage. 

Here, routing a network refers to determining the mappings of 
the inputs of its switches from a permutation so as to connect its 
inputs to its outputs as‘specified in the permutation. For a network 
with n inputs and n outputs, a permutation specifies n. pairs of 
inputs and outputs, each of which is called an assignment. Let 
be the minimum number of assignments that must be examined in 
order to determine the mapping of input j of switch i in a network 
for any given permutation. The information complexity of routing a 
network is the largest over all the inputs of all the switches in the 
network. A lower bound on the routing time of a network immediately 
follows from a lower bound on the information complexity of routing 
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that network. In particular, if a network has an Q ( T )  information' 
complexity of routing then any constant fan-in implementation of 
any routing algorithm' for that network would have a time lower 
bound of Q(1ogr). 

Much has been reported on routing Clos networks. Opferman 
and Tsao-Wu [27], and Waksman [31] described the @(nlogn)-  
time sequential algorithm for an n-input Clos network with binary 
switches, called the Benes network [SI. An extension of this algorithm 
to Clos networks with 2t x 2t switches where t 2 1 was given 
by Andresen [2]. For the BeneS network, Nassimi and Sahni [24] 
described a parallel routing algorithm which runs on an n-processor 
computer with a completely connected communication graph in 
@(log2 n)  time. For Clos networks with an arbitrary number of in- 
puts, matrix decomposition heuristics [3], [15], [26] facilitate routing 
with backtracking, which in general result in exponential time. More 
efficient routing algorithms for these networks were devised by Lev, 
Pippenger, and Valiant [21] based on edge-coloring bipartite graphs. 
Their parallel routing algorithm requires @(log2 n log m )  time for a 
three-stage Clos network with m x m switches in its outer stages, and 
it takes @(log3 n) time for a recursively decomposed Clos network 
on an EREW PRAM: an n-processor computer in which multiple 
processors can access any part of a shared memory in unit time, but 
in which read and write conflicts are not allowed [16]. As shown in 
[7], [14], other efficient routing algorithms for permutation networks 
can be obtained by using the edge-coloring algorithms described in 
PI, [121, Wl. 

As with other lower bound results, it is important to determine 
the information complexity of routing Clos networks-in order to 
determine the effectiveness of these routing schemes. We prove that 
the information complexity of routing a Clos network consisting of 
m x m switches in its first and third stages, and k x k switches 
in its center stage is at least ( k  - 3)(m/2 + 1 ) / 2  for IC 2 4. 
To establish this result, we examine the dependencies between the 
assignments in permutation requests and the mappings of the inputs 
of switches in a three-stage Clos network. A simple fan-in argument 
then yields the R(log, mk) lower bound on the routing time of such 
a network for any routing model with w fan-in. This lower bound in 
turn establishes that it takes Q(n + (n/m)log, n)  steps to route a 
recursively decomposed three-stage Clos network, if its subnetworks 
are routed in sequence, and Q(log, n log, n) steps if they are routed 
in parallel. (These bounds are given in greater detail in Section V.) 

It is worthwhile to contrast the information complexity of routing 
Clos networks with the information complexity of routing other 
networks, in particular, self-routing networks. First, we note that the 
information complexity of routing a self-routing network is never 
greater than the maximum number of inputs that can reach a switch 
in that network. For example, the information complexity of routing 
the first stage of a unique-path network such as those described in 
[20] is one since it suffices to examine a single bit of one input 
of each first-stage switch to determine its setting. When operated 
as a self-routing network, the information complexity of routing the 
first stage of the BeneS network is two, since it suffices to examine 
either one or two inputs to determine the mapping of either input of 
any switch in that stage [25], [29]. It should be noted that, unlike 
Clos networks, unique-path and BeneS networks (in self-routing 
mode) cannot realize all permutations 1251, 1291. On the other hand, 
Batcher's sorting networks [4] can route all permutations, and the 
information complexity of routing their first stage is only two. The 

'In expressing complexities, we use the standard complexity notations 0, 
R, and 0; see [I71 for definitions. 

2Here, the fan-in of an implementation of a routing algorithm refers to 
the maximum number of inputs each elementary device can have in that 
implementation. 

Fig. 1. A 9-input Clos permutation network. 

tradeoff in this case is hardware cost; Batcher sorters use @(nlog2 n) 
switches whereas Clos networks can be minimized to have O ( n  log n) 
switches. 

In all three networks, the fact that the information complexity of 
routing the first stage is a constant and also that these networks have 
a recursive structure explain why, they are very easy to route. In 
contrast, the main result of this paper shows that the information 
complexity of routing the first stage (as well as the second and third 
stages) of a Clos network is about as large as the number of inputs to 
the network, and this explains why these networks cannot be routed 
as they are traversed. 

The remainder of the paper is organized as follows. Section 11 
states preliminary facts needed in subsequent sections. Section III 
introduces the notions of multiloops and balanced multiloops, and 
Section IV uses these to obtain the claimed information complexity 
lower bound. Section V uses this lower bound to determine the time 
complexities of various routing schemes for Clos networks. In Section 
VI extant routing algorithms are compared to the bounds. The paper 
is concluded in Section VII. 

II. PRELIMINARY FACTS 

A three-stage Clos network will be defined in terms of two 
parameters, m and k where m is the number of inputs to each of the 
switches in the outer stages, and k is the number of inputs to each of 
the switches in the center stage [8], [SI. The total number of inputs 
(outputs) to the network is mk and will be denoted by n. Note that k 
is also the number of switches in each of the outer stages while m is 
also the number of switches in the center stage. The interconnections 
between consecutive stages are such that there exists exactly one link 
between every center- and outer-stage switch. For example, a Clos 
network appears in Fig. 1 for n = 9, and m = k = 3. 

Input and output terminals to the network will be labeled by pairs 
( i ,  j ) ;  0 5 i 5 IC - 1, 0 5 j 5 m - 1 where (i, j )  denotes the j t h  
input or output (depending on context) of switch i. A permutation 
A to be realized by the network will be specified in the form of 
[(i, j ) ,  ~ ( i ,  j ) ] ,  0 5 i 5 k - 1, 0 5 j 5 m - 1 where ~ ( i ,  j )  is 
the output to which input (i, j )  is mapped. When we do not wish 
to emphasize to which switches inputs or outputs belong, we will 
denote them by integers 0, 1,. . . , n - 1 and express A as [i, a( i ) ] ,  
0 5 i 5 n - 1. Permutations for the input, center, and output stages 
will be denoted by A I ,  AM, TO, respectively. 

Our model of routing a Clos network, to be called a muter, will 
be a black box that receives a permutation A in the form of a set 
of assignments and returns a set of settings for the switches in the 
network so as to realize A. These settings, for each stage of the 
network, may be viewed as a permutation A., s E {I, M, 0). For a 
fixed z, a,, and s, A.(z, y) specifies the image of input y of switch 
z in stage s, i.e., the output of switch z in stage s to which its input 
a, is mapped. 
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In determining switch settings, we will be interested only in the 
minimum number of assignments that the router must use, i.e., the 
information complexity of setting switches, rather than the actual 
computation that the router engages in to determine the settings. Once 
such an information lower bound is obtained then the structure of the 
router can be brought to bear on that bound to determine a lower 
bound on its routing time. 

The information bound on routing a three-stage Clos network will 
be derived by finding dependencies between assignments in x and 
settings in permutations xg .  

Dejinition I: ”bo permutations RI  and xz  are said to differ on a 
set of inputs if their assignments on those inputs are different. For 
example, xi = [0, 41, 11, 31, 12, 11, [3, 21, 14, 51, 15, 01 and =z = 
[0, 41, [l, 31, [2, 11, [3, 21, [4, 01, [5, 51 differ on inputs 4 and 5 .  0 

Definition 2: Let x be a permutation to be realized by a Clos 
network and A be a subset of inputs of stage s E {I, M ,  0). Define 
VA(X,  s) to be the set of all mappings of the subset of inputs A of 
stage s which do not prevent the Clos network from realizing x .  0 

The set VA(X,  s) will be used to define the dependencies between 
the assignments in x and settings in x s .  

DeJinition 3: Let A be a set of assignments and let A and s 
be defined as above. The mappings of inputs in A are said to be 
dependent upon A (briefly, A depends on A) if there exist two 
permutations xl  and 7r2 which differ only in inputs which appear 
in the assignments that belong to A and such that VA(TI, s) n 

the router must provide 
different mappings for the inputs in A under x1 and xz if the network 
is to be set up properly. To distinguish x l  and xz the router must 
examine the assignments in A. That is, if A depends upon A, a 
router which computes A must base its computation on the part of 
the permutation specified by A. 

Although dependencies are defined above for a set of assignments, 
it will be useful to define them for an individual assignment. This 
cannot be done directly using the above definition because the 
permutations R I  and xz  cannot be found when A contains exactly 
one element, since if two permutations differ they must differ in at 
least two places. Despite this fact, the dependency of a switch setting 
on a subset of assignments can be inferred indirectly as stated in the 
following. 

Proposition I: If the mappings for a set of inputs A of a set of 
switches depend upon a set of assignments A, then they depend on 
at least one of the assignments in A. o 

The set A may depend on A without having to depend on all the 
assignments in A. That is, we may have two permutations x l  and xz 
which differ only on assignments in A and for which the mappings 
of the inputs in A may be disjoint, but no two such permutations may 
exist for some subset of A. The following results establish that, under 
certain conditions, we may determine the number of “element-wise” 
dependencies from “subset-wise” dependencies. 

Lemma I: If the mappings for a set of inputs A of a set of switches 
depend upon all subsets of assignments of cardinality T of a set of 
assignments A then they depend upon at least IAI -T +1 assignments. 

Proof: The largest set of assignments which A could not depend 
on, consistent with the Lemma, is one with cardinality r - 1, so A 

0 
Lemma 2: Given an input 6 of a switch and z disjoint sets of 

assignments Ao, A I , .  . . , A,-1, if the mapping of 6 depends upon 
A, U A, for all 0 5 i < j < H then it depends upon either all, or 
all but one of the A,. 

Proof: Suppose the mapping of 6 does not depend on one of 
the sets, say Ao. Then it must depend on A,; 1 5 i 5 z - 1 since it 

0 

vA(T2, 8) = 4- 0 
Because V A ( T ~ ,  s) n VA(XZ,  s) = 

depends on at least IAl - r + 1 assignments. 

depends on AO U A, for all i ;  1 5 i 5 z - 1. 

These facts, combined with the results of Section 111, will be used 
in Section N to find the minimum number of assignments necessary 
to determine the stage settings for a three-stage Clos network for some 
permutations. Once the dependencies are determined the lower bound 
on the time it takes to route a 3-stage Clos network immediately 
follows. 

m. PERMUTATIONS AS MULTIGRAPHS AND MULXIL00P.S 

To find the dependencies, permutations with special properties will 
be described. These permutations will be represented as bipartite 
multigraphs. Let z k  = (0, 1,. . . , k - 1). w e  shall write (I, M ,  0)  
to denote a bipartite multigraph with two disjoint sets of vertices, 
I = z k ,  and o = z k ,  and a mu~tiset~ of edges M c (I x O)m 
connecting the two sets of vertices where (I x O)m is a multiset 
containing I x 0 m times. The elements in I will be referred to as 
leji vertices, and represent the input-stage switches while the elements 
in 0 will be referred to as right vertices and represent the output- 
stage switches. An edge between left vertex i and right vertex j will 
be denoted by [i, j]. For each permutation x ,  the set M contains r 
edges [i, j ]  iff x ( i ,  z) = ( j ,  y) for exactly r distinct pairs of integers 
(5, y) where 2 (y) is an input (output) of switch i ( j )  in the input 
(output) stage. 

Thus, when a left vertex i is connected to a right vertex j by 
r edges the connection represented has exactly T inputs which are 
mapped from input-stage switch i to output-stage switch j under the 
corresponding permutation. Each (2, y) pair specifies an input z of 
input stage switch i which is connected to output y of output stage 
switch j .  Furthermore, it can be shown that for any given m and 
k ,  the bipartite multigraph representation of each permutation for an 
n-input Clos network is unique, while many permutations can have 
the same bipartite multigraph representation. 

For any given permutation, the permutations for the center stage 
of a Clos network that result in the realization of that permutation 
can be identified by m-edge-colorings of its corresponding bipartite 
multigraph. A bipartite multigraph is said to be m-edge-colored if 
its edges are colored such that no two edges of the same color are 
incident on the same vertex and exactly m colors are used. It is well 
known that m colors suffice to edge-color a bipartite multigraph of 
degree m [ l l ] .  

Furthermore, it is well known that there is a correspondence 
between an m-edge-coloring of a bipartite multigraph representing 
a permutation x for a Clos network, and the center-stage permutation 
x , ~ .  (See [21], [24] for an early application and [7] for a thorough 
treatment.) An example is depicted in Fig. 2 for a Clos network with 
m = 2, k = 4. Edges between left and right vertices that are labeled 
with color 0 are assigned to the upper switch in the center stage, and 
those colored with 1 are assigned to the lower switch. 

In order to exhibit the dependencies of the permutations of the 
center-stage switches on the permutations to be realized by a Clos 
network we need to consider m-edge-colorings of the bipartite multi- 
graph representations of certain permutations. These permutations 
will be identified by some particular subgraphs which we shall refer 
to as balanced multiloops. We will show that these subgraphs can 
be edge-colored only two different ways. This fact will then later be 
used in Section IV in the construction of dependencies between the 
inputs and outputs of a router for three-stage Clos networks. 

Definition 4: A bipartite multigraph, (I, M ,  0), is a multiloop of 
size 1 if III = E = 10) and, if, when multiple edges between pairs of 
vertices are taken as one, the graph consists of a single loop. 0 

3A multiset is a set that may contain multiple copies of a single element, 
for example, { a ,  a ,  b, c } .  
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Fig. 4. Examples of unmixed and mixed colorings of a multiloop. 

Fig. 2. A bicolored bipartite multigraph and corresponding Clos network. 

Fig. 3. Examples of multiloops shown in heavy lines form = 2 and IC = 4. 

Dejnition 5: A bipartite multigraph, (I, M, 0), contains a mul- 
tiloop of size E if there exists IL e I, OL e 0, and ML = {[z, y] I 
z E IL ,  y E O L ,  [z, y] E M} such that I IL~ = I = 10~1 and the 

0 
Definition 6: A multiloop ( I L ,  ML,  O L )  is called balanced if it 

is regular with degree m and for all pairs [ i ,  j ] ,  i E IL and j E OL, 
ML contains either no edges or exactly m12 edges between vertex i 
and vertex j .  That is to say, every pair of vertices which are connected 

0 
Examples of ordinary (i.e., not balanced) and balanced multiloops 

are given in Fig. 3 for a Clos network with m = k = 4 where 
the heavy lines represent the edges in the loops. In both loops, 

When a bipartite multigraph is m-edge-colored, it induces an m- 
edge-coloring on any of its multiloops. For example, when the graphs 
in Fig. 3 are colored, each of the multiloops ends up having an 
edge-coloring with four colors. In general, a multiloop of a bipartite 
multigraph of degree m can be edge-colored by using m colors, and 
no less since the degree of each vertex in any such loop is m. There 
exists a bijective mapping between these m colors and the m center- 
stage switches of the corresponding Clos network in that all the edges 
in a multiloop with the same color are mapped to the same center- 
stage switches. Obviously, this mapping is not unique, as the colors 
can be mapped to the switches in any one of m! ways. In the case 

graph (IL, ML,  O L )  is a multiloop. 

are connected by m12 edges. 

I L  = (1, 2, 3}, OL = (0, 1, 2). 

of balanced multiloops, however, the number of such maps can be 
reduced to two cases as argued below. 

Definition 7: Divide the set of m colors assigned to 
the edges of a multiloop into two sets of colors; shades 
of blue, SB = {bo, b l , . .  . ,bm/z-l} ,  and shades of red, 
SR = {TO, T I , .  . . , ~ , p - ~ } .  An m edge-coloring of a multiloop is 
said to be unmixed if the edges between any two vertices receive 
colors from SR or from SB but not both. Otherwise, it is called 
mixed. 0 

Examples of unmixed and mixed edge-colorings of a multiloop 
are shown in Fig. 4. It can be seen that in the unmixed coloring, the 
edges (whenever they exist) between a left vertex and right vertex 
are colored either with shades of red, i.e., TO and T I ,  or shades of 
blue, i.e., bo, and b l .  On the other hand, the mixed coloring does not 
follow this convention as can be seen in Fig. 4@). 

Lemma 3: A balanced multiloop can have exactly two unmixed 
m edge-colorings when edges between a pair of vertices are not 
considered distinct. 0 

Iv. CONSTRUCTION OF DEPENDENCIES 
We proceed by constructing two permutations based on two 

balanced multiloops. 
Dehition 8: Let there be two sets of four vertices 

{MO, 211, W ,  w3} I, and {VO, 0 1 ,  VZ, 03) 0 where I 
and 0 are two k-sets of vertices. We construct two multiloops 
(IioOp, Mioop, OioOp) and (IioOp, M:oop, OioOp) such that 

Iloop = {MO, U l ,  u2, u 3 }  c I ,  

where [ U ,  0Iml2 denotes “edge [ U ,  01 repeated m/2 times.” 
A permutation whose bipartite multigraph (I, M, 0) has 
(hoop, Mioopr Oloop) as a subgraph is denoted nloop. Similarly, 
a permutation whose bipartite multigraph (I, M, 0) has 
(Iioop, hf~oop, oioop) as a subgraph is denoted n{oop. The 
subgraphs of these permutations will be referred to as loops. 

Obviously this extension is not unique, and many permutations 
can be constructed this way. The two permutations are similar in 
two respects. Their bipartite multigraph representations both have 
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the same left and right vertices and most edges in common: The only 
difference is that MloOp contains edges [UI, vl]m/2 and [us, voIm/' 
which Mioop does not and contains edges [ U Z ,  vl]m/z and 
[UI, v ~ ] ~ / '  which Mloop does not. Finally, the two permutations 
contain balanced multiloops of size 4. 

By Lemma 3 each of these loops can be edge-colored using shades 
of two colors in exactly two ways. Table I lists the correct mappings 
for inputs uo and uz of a center-stage switch c under AM that can 
route ~l~~~ and A ; ~ , ~ .  Here, T indicates that the edges between 
vertices uo and W O  are colored with colors from SR and b indicates 
that these same edges are colored with colors from SB. AM(C, UO) 
denotes the output of switch c to which AM maps input uo of that 
switch. AM(C, UZ) is similarly defined. We also emphasize that output 
c of input stage switch uz connects to input U= of center-stage switch 
c; similarly, output wy of center-stage switch c connects to input c of 
output-stage switch vy for all e, y E z k .  (see Table I.) 

Suppose A = {(c, UO), (c, UZ)}. Then the possible mappings 
for the inputs in A under ~l~~~ and A [ ~ ~ ~  are V A ( A I ~ ~ ~ ,  A M )  = 
{[(c, vo), (c, vz)], [(c, vi), (c,  w)]}, and v ~ ( ~ i ~ ~ ~ ,  A M )  = 
{ [ ( c ,  WO),  (c, v3)1, [(c, vi), ( C Y  vz)]). Let U,, = {(uz, j) I 
j E Z,} be the set of inputs of input-stage switch ut. Since 
VA ( ~ i ~ ~ ~ ,  AM) n VA ( T [ ~ ~ ~ ,  A M )  = 4, and  AI^^^ and differ 
only on assignments in sets U,, and U,,, by Definition 3, we 
conclude that mappings for the inputs in A must depend on 
assignments in U,, U U,,. 

Theorem I: For all distinct UO, U I ,  UZ, u3 E Zk and c E z,, 
mappings for inputs (c, UO), (c, U Z )  of the center-stage switch c 
depend upon assignments for inputs in U", U UuQ, 

Now, consider a family of loop permutations ~l~~~ and H { ~ ~ ~  in 
which uo and uz are the same in each permutation, but where u1 
and u3 can take on arbitrary values. Regardless of how u1 and u3 
are chosen, VA  AI^^^, AM) n VA ( A { ~ ~ ~ ,  A M )  = 4, whence 

Theorem2: For d l  distinct UO, uz E z k  and c E z,, the 
mappings for inputs (c, UO), (c, UZ) depend upon the assignments 
in each of at least k - 3 of U,, i E Zk\{UO, UZ}. 

Proof: For UO, uz E z k ,  choose u1, 113 E &\{uo, UZ}. 

Construct moOp and T:, ,~ from these values. By Lemma 2 and 
0 

Theorem 3: For d l  distinct UO, u2 E z k  and c E z,, mappings 
for inputs (c, UO), (c, UZ) in AM depend upon at least ( k - 3 ) ( m / 2 +  
1) assignments. 

Proof: If A = {(c, UO), (c, UZ)} depends on assignments on 
U,, then it must depend on assignments on every subset of mi2 
elements in U, since, for every m / 2  elements chosen out of Ut, we 
can define two permutations (by appropriate choice of SR and SB) 
which conform to the structure of ~l~~~ and A { ~ , ~ .  Therefore, by 
Lemma 1, there are at most m / 2  - 1 assignments A does not depend 
upon. Combining this fact with'Theorem 2 we conclude that there 
are (k - 3 ) ( m / 2  + 1) assignments which A depends upon. 0 

Note that A contains two elements. Since it cannot be determined 
which of the two elements depend upon which assignments, the 
assignments must be divided evenly, to have a correct (worst case) 
lower bound on the number of dependencies. Thus, a setting in AM 

Theorem 1 the k - 3 dependencies are obtained. 

depends upon at least ( k  - 3 ) ( m / 2  + 1 ) / 2  = ( k  - 3 ) ( m  + 2 ) / 4  
assignments. 

Although the dependencies were derived for the settings of the 
center stage switches, they apply to all stages. That is, permutations 
 AI^^^ and A { ~ ~ ~  induce disjoint settings in input-stage switches uo 
and uz and output-stage switches vz and w3, so that the same 
dependencies apply. 

The result just derived does not hold for Clos networks with k 5 3. 
This is because we cannot form balanced loops when k 5 3 .  To find 
dependencies in these networks consider a router, this time, for the 
input-stage switches, and consider the mapping of input (e, y), i.e., 
input y of switch c in the input stage. This result will be derived for 
a Clos network in which switch 0 in the input stage is fixed in the 
identity state. It has been shown that such networks can realize all 
permutation connections [3 1 I. 

Theor.": The mapping of input (e, y) depends upon at least 
m - 1 assignments. 

Pro03 Construct two permutations A and A' in the following 
way: 

(0, i )  0 5 i < z 

z < i < m 

(0, i )  0 5 i < w 
4 x 7  Y) = (0, 21, 

7r ' (O ,  i) = (0, i) w < i < z 
(0 ,  w) i = z I (0 ,  i )  z < i < m 

A f ( Z ,  Y) = (0 ,  .) 

~ ( 0 ,  i )  = (1, 0 )  i = z 

(0, i )  { 
( 1 , O )  i = w  

where w, y, z E Z,, such that w # z ,  and x # 0, and where 
unspecified, assignments are identical in A and T' .  Permutations x 
and n' differ only in inputs (0,  w)  and (0, z). With permutation A, 
the only path from input-stage switch e to output-stage switch 0 is 
through center-stage switch z. With permutation A' the only path 
from input-stage switch e to output-stage switch 0 is through center- 
stage switch tu. Therefore, the mapping of input (e, y) in AI must 
be different under permutations A and A', and consequently, depends 
on assignments for inputs (0,  w)  and (0, z) .  But, since .z and w can 
take on all unequal pairs of values, by Lemma 1 the mapping of input 

0 
Combining Theorem 3 and Theorem 4, we conclude the following. 
Corolluly 1: The information complexity of routing an n-input 

Closnetworkis ( k - 2 ) ( n / k + 2 ) / 4 ,  for all k 2 4, and it is ( n / k ) - 1  
for k 5 3.  Furthermore, if the fan-in of the devices used in a router 
to route an n-input Clos network is no more than w then it takes 
R(logw n)  time to compute the switch settings in that network. 0 

(x, y)  depends upon at least m - 2 + 1 = m - 1 inputs. 

v. ROUTING COMPLEXITY OF &.CURSIVELY 
DECOMPOSED CLOS NETWORKS 

With the lower time bounds established in the preceding section, 
we can now bound the time of routing a recursively decomposed Clos 
network. This bound depends on how the switches in the center stage 
are routed as well as on how much time we allocate to routing the 
remainder of the network. 

In a recursively decomposed Clos network, some switches are 
implemented as smaller Clos subnetworks. Particularly, switches 
below a certain size are directly implemented using crossbar switches. 
Larger switches are realized by smaller Clos networks, called sub- 
networks in this context. For example, a 2"-input Bene8 network is 
a recursively decomposed Clos network with m = 2; the value of 
k varies with the level of recursion. If k = 2l-l then I = s at the 

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994 283 

TABLE I l l  

Routing Network Level Total Maximum Time 
Algorithm bpes  Time lime Condition 

Lower Bound 2 5 m 5 n  log, n w g ,  n log, n) m = 2  

Lev et al. m,  power of 2 log m log n @(log2 n + IogmIog(n/m2)) m = no 25 

Nassimi and Sahni m = 2 log n Q( log’ n) - 

m =  
n( (1 /IS)+ d3m Lev et al. 2 5 m 5 n  log m log’ n @(log’ nlogn2m3 + log2 mlog(n/m6)) 

TABLE II 
Routing Recurrence Routing Time 

Lower Bound Scheme Relation 

R-sequentiallL- T, = mTn/, + cn n(nlog, n) 
sequential 
R-paralleYL-sequential Tn = Tnlm + cn O(n) 
R-sequentiaVL-parallel Tn = w n  + (n/m) log, n) 

. mT,/, + clog, n 
R-paralleYL-parallel Tn = Tn/,,, +clogw n R(log, nlog, n) 

top level, 1 = s - 1 at the second level of recursion, and so on. 
The input and output stage switches are directly implemented using 
crossbar switches, while each of the two center stage switches are 
implemented as 2’-’-input BeneS networks at level 1. 

Routers for recursively decomposed networks can be specified 
in a recursive fashion: the input to the router is the permutation 
the network is to realize; the router generates the setting for each 
of the switches, and is invoked recursively for the settings of the 
subnetworks. To route the subnetworks, i.e., to find their settings, 
we can proceed in at least one of two ways: either set all the 
subnetworks in the center in parallel, or set them one at a time in 
some predetermined sequential order. We will refer to these cases as 
R-parallel and R-sequential schemes in that order. It is possible to 
use other routing schemes, e.g., set the first half of subnetworks in 
parallel, and then set the second half in parallel, etc. Even though 
these intermediate schemes may provide further insight on routing 
recursively decomposed Clos networks, here we are interested in 
bounds on routing complexity, and therefore will restrict our focus 
to R-parallel and R-sequential schemes. 

As for routing each level, i.e., deciding the settings of the switches 
at each level, we may proceed in two different ways. Any sequential 
routing scheme can be seen to require O ( n )  time (reading in the 
permutation to be realized will take O ( n )  time) while the lower bound 
of the previous section indicates that any parallel scheme on a router 
with fan-in w takes R(log, n) time. Routing schemes which confirm 
to these lower bounds will, respectively, be referred to as L-parallel 
and L-sequential schemes. 

Table II lists the four routing schemes which are formed by 
combining the recursion and level choices. The first column lists the 
possible choices, the entries in the second column are the recurrence 
relations corresponding to these choices, and those in the third column 
are execution time complexities for the four routing schemes. The 
variable c in the recurrences is a constant. The derivations of these 
expressions from the recurrences are straightforward and omitted 
here. 

It is seen that any R-sequentiaYL-sequential routing scheme re- 
quires fl(n log, n) time. When m = 2 this reduces to fl(n logn), 
and when m = n/2  it reduces to O(n) .  The first case characterizes 
networks with small switches in their outer stages such as the BeneS 
network [51, while the second case characterizes networks with large 

switches in their outer stages such as the complementary BeneS 
network [7]. On the other hand, any R-paralleYL-sequential scheme 
requires O ( n )  time, for all integral m ,  2 5 m 5 n. 

As for the last two routing schemes, it follows from the table 
that any R-sequentiaVL-parallel scheme takes fl(n) time when m = 
O(n)  and fl(nlog,n) time when m = O(1). Furthermore, any 
R-paralleYL-parallel scheme needs fl(log, n log, n) time which 
reduces to O(1og;n) when w = @(m). 

VI. COMPARISONS 
In this section the lower bounds on the routing time of Clos 

networks will be compared to the routing times of existing algorithms 
with and without recursive decomposition. The time complexities of 
the existing routing algorithms match the lower bounds for the cases 
of m = 2 and k = 2, but for intermediate values of m and k, 
the time complexity of known algorithms is higher. This discrepancy 
is not surprising, as will be explained below, but also hints of the 
existence of faster algorithms. 

First, consider routing three-stage Clos networks without recursive 
decomposition. For m = 2, the fastest algorithm has O(1ogn) time 
complexity [24], matching the lower bound given in Corollary 1 with 
w = O(1). For larger m there are algorithms with time complexity 
O(logm1ogn) when m is a power of 2 and @(logmlog2 n)  
otherwise [21]. Here, the known algorithms take more time than their 
m = 2 and k = 2 counterparts, while the bound is lower. The reason 
that the known algorithms take longer when m > 2 is because they 
treat the Clos network as a BeneS network; they are iterated @(log m )  
times, each subsequent call routes a lower level in R-parallel fashion. 

When m > 2, a faster algorithm might avoid iteration even though 
it at first seems that there is an as yet undiscovered reason why this 
cannot be done. However, the existence of a bound-matching routing 
procedure for Clos networks with m = n/2 suggests otherwise. 
A Clos network with m = n / 2  can be routed in @(SO(n /2 ) )  
time where SO(n/2)  is the execution time of an n/2  item sorting 
algorithm [19]. Using the AKS sorting algorithm [ l ]  one can then 
set up the network in @(logn) time, which matches the bound in 
Corollary 1 and suggests that iteration is not necessary. 

These observations can be extended to recursively decomposed 
Clos networks. Table III shows the lower bound for any R-paralleYL- 
parallel routing scheme for a Clos network, and the time complexities 
of the best known routing algorithms in this case. The parameter 
m is of particular interest because network cost increases with 
increasing m while the number of switches between an input and 
output decreases with increasing m.  Because of m’s importance the 
table includes the value of m in the interval 2 5 m 5 n which would 
yield the maximum routing time. The complexities and maxima were 
obtained from solutions of the recurrence 

where L(n) is the expression in the table’s “Level Time” column. 
If a level of a Clos network could be routed in O(1ogn) time, the 

entire network could be routed in @(log, n logw n) time using an 
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L-paralleVR-parallel algorithm. This bound is achieved with m = 2 
and w = 0 ( 1 )  using the algorithm of Nassimi and Sahni [24] and 
Lev et al. [21]. With larger m, the bound on time drops; this occurs 
both at a single level and for the entire network; the routing time 
bound is at a maximum when m = 2. As with the single level case, 
the routing time of the known algorithms for recursively decomposed 
Clos networks is greater than the bound by a logarithmic factor when 
m = O(n)  and is a power of two and by a log squared factor 
otherwise. 

Consider the Lev et al.’s algorithm when m is a power of two. AS 
can be verified from Table 111, the time complexity of this algorithm 
is O(log2n) for any m which is a power of 2, while the lower 
bound does not rule out the possibility of a O(1ogn)-time algorithm. 
As stated above, the only value of m for which this lower bound is 
attainable is n/2. This is achieved by using the sorting-based routing 
algorithm [19] with its sorting steps realized by the AKS sorting 
network. Given that the AKS sorting network remains impractical, 
a Batcher odd-even merge or bitonic sorter [4] can be used to 
implement the sorting steps of this algorithm, in which case a routing 
time of @(log2 n) can be achieved as with Lev et al.’s algorithm. 

Finally, Lev er al.’s algorithm exhibits an even higher order of 
routing time complexity when 2 5 m 5 n as manifested by the 
expression in the last row. A faster CIos network routing algorithm for 
intermediate values of m should prove useful. Although recursively 
decomposed Clos networks for m = 2 have fewer crosspoints [5] the 
cost may be smaller for other values of m, when additional factors 
such as the overhead of implementing a cell of any size, the cost of 
interstage links, etc., are taken into account. Thus, there is a need for 
fast routing algorithms for Clos networks with other values of m. 

VII. CONCLUDING REMARKS 
The paper has presented lower bounds on the routing time of 

Clos networks. It has been shown that, when k > 3, at least 
(k-3) (m/2+1) /2  assignments in the permutation to be routed must 
be examined in order to compute the switch settings of a Clos network 
with k input-stage switches, each encompassing m inputs. It has 
additionally been shown that, when k 5 3, at least m - 1 assignments 
in the permutation to be routed must be examined in order to compute 
the switch settings of the same network. Combining these results with 
a simple fan-in argument then gives sl(log, n) bound on the routing 
time of a three-stage Clos network on any w fan-in limited routing 
model. Implications of this bound were considered for recursively 
decomposed Clos networks with respect to four routing schemes. 
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