
278

ACKNOWLEDGMENT

IEEE

We are grateful to G. Lachaud for showing us [8] at exactly the
moment that we were inventing and studying the notion of higher
weights for projective systems. The last two authors would also like to
thank the United Kingdom Science and Engineering Research Council
for its support and the University of Sussex at Brighton for its warm
hospitality.

REFERENCES

[l] I. M. Chakravarti, “Families of codes with few distinct weights from
singular and nonsingular Hermitian varieties and quadrics in projective
geometries and Hadamard difference sets and designs associated with
two-weight codes,” in IMA Vol. Appl. Marh., no. 20, Springer, New
York, pp. 35-50, 1990.

[2] G. L. Feng, K. K. Tseng, and V. K. Wei, “On the generalized Hamming
weights of several classes of cyclic codes,” IEEE Trans. Inform. Theory,
vol. 38, pp. 1125-1130, May 1992.

[3] T. Helleseth, T. Neve, and 0. Ytrehus, “Generalized Hamming weights
of linear codes,” IEEE Trans. Inform. Theory, vol. 38, pp. 1133-1140,
May 1992.

[4] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries.
Oxford: Oxford University Press, 1991.

[5] D. Nogin, “Generalized Hamming weights for codes on multi-
dimensional quadrics,” Problems Inform. Transmission, to appear.

[6] M. A. Tsfasman and S . G. Vliiduf, Algebraic-Geometric Codes. Dor-
drecht: Kluwer Academic, 1991.

[7] Z. Wan, “The weight hierarchies of the projective codes from nonde-
generate quadrics,” Des. Codes Cryptograph., to appear.

[8] V. K. Wei, “Generalized Hamming weights for linear codes,” IEEE
Trans. Inform. Theory, vol. 37, pp. 1412-1418, Sept. 1991.

[9] K. Yang, P. V. Kumar, and H. Stichtenoth, “On the weight hierarchy of
geometric Goppa codes,” to be published.

TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994

The Complexity of Routing in Clos Permutation Networks

David M. Koppelman, Member, IEEE,
and A. Yavuz h~, Senior Member, IEEE

Absmzct-A lower bound on the amount of information necessary to
compute the switch settings for a three-stage Clos network is derived. The
bound is derived by considering the effect of a family of permutations,
called balanced multiloops, on the settings of the switches of a Clos
network. By carefully selecting these permutations, it is proven that there
exists at least one switch in each stage whose setting depends upon at
least (k - 3)(m/2 + 1)/2 assignments in the permutations to be routed
for k 2 4 where m is the number of center-stage switches and k is the
number of input and output-stage switches. It is also proven that the
setting of the input stage depends on at least m - 1 assignments. Lower
bounds on the routing time of a three-stage Clos network on a variety
of machine models follow immediately from these results. In particular,
any constant fan-in implementation of any routing algorithm for such a
network should have a time lower bound of n(logmk).

Index Terms-Clos network, edge-coloring, information complexity of
routing, lower bounds, network routing, permutation network, routing
complexity.

I. INTRODUCTION
This paper examines the information complexity of routing in

Clos permutation networks. Such networks are typically formed
recursively from smaller networks, and have widely been investigated
as connectors in telephone switching [5] , [22], [28] and parallel
computer systems [61, [lo], [23].

Formally, a three-stage Clos permutation network, henceforth to
be called a Clos network, is defined in terms of two parameters,
m and k where m is the number of inputs to each of the switches
in the outer stages, and k is the number of inputs to each of the
switches in the center stage [8], [5]. The total number of inputs
(outputs) to the network is given by mk and will be denoted by n.
The interconnections between consecutive stages are such that there
exists exactly one link between every center- and outer-stage switch.
Consequently, the parameter k also specifies the number of switches
in each of the outer stages while m is the number of switches in
the center stage.

Here, routing a network refers to determining the mappings of
the inputs of its switches from a permutation so as to connect its
inputs to its outputs as‘specified in the permutation. For a network
with n inputs and n outputs, a permutation specifies n. pairs of
inputs and outputs, each of which is called an assignment. Let
be the minimum number of assignments that must be examined in
order to determine the mapping of input j of switch i in a network
for any given permutation. The information complexity of routing a
network is the largest over all the inputs of all the switches in the
network. A lower bound on the routing time of a network immediately
follows from a lower bound on the information complexity of routing

Manuscript received January 23, 1992; revised October 22, 1992. This work
was supported in part by the National Science Foundation under Grant CCR-
8708864. This paper was presented in part at the Allerton Conference, Urbana,
E, October 1988.

D. M. Koppelman is with the Department of Electrical and Computer
Engineering, Louisiana State University, Baton Rouge, LA 70803.

A. Y. Orup is with the Department of Electrical Engineering and the Institute
for Advanced Computer Studies, University of Maryland, College Park, MD
20742.

IEEE Log Number 9215121.

0018-9448/94$04.00 0 1994 JEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994 279

that network. In particular, if a network has an Q (T) information'
complexity of routing then any constant fan-in implementation of
any routing algorithm' for that network would have a time lower
bound of Q(1ogr).

Much has been reported on routing Clos networks. Opferman
and Tsao-Wu [27], and Waksman [31] described the @(nlogn)-
time sequential algorithm for an n-input Clos network with binary
switches, called the Benes network [SI. An extension of this algorithm
to Clos networks with 2t x 2t switches where t 2 1 was given
by Andresen [2]. For the BeneS network, Nassimi and Sahni [24]
described a parallel routing algorithm which runs on an n-processor
computer with a completely connected communication graph in
@(log2 n) time. For Clos networks with an arbitrary number of in-
puts, matrix decomposition heuristics [3], [15], [26] facilitate routing
with backtracking, which in general result in exponential time. More
efficient routing algorithms for these networks were devised by Lev,
Pippenger, and Valiant [21] based on edge-coloring bipartite graphs.
Their parallel routing algorithm requires @(log2 n log m) time for a
three-stage Clos network with m x m switches in its outer stages, and
it takes @(log3 n) time for a recursively decomposed Clos network
on an EREW PRAM: an n-processor computer in which multiple
processors can access any part of a shared memory in unit time, but
in which read and write conflicts are not allowed [16]. As shown in
[7], [14], other efficient routing algorithms for permutation networks
can be obtained by using the edge-coloring algorithms described in
PI, [121, Wl.

As with other lower bound results, it is important to determine
the information complexity of routing Clos networks-in order to
determine the effectiveness of these routing schemes. We prove that
the information complexity of routing a Clos network consisting of
m x m switches in its first and third stages, and k x k switches
in its center stage is at least (k - 3)(m/2 + 1) / 2 for IC 2 4.
To establish this result, we examine the dependencies between the
assignments in permutation requests and the mappings of the inputs
of switches in a three-stage Clos network. A simple fan-in argument
then yields the R(log, mk) lower bound on the routing time of such
a network for any routing model with w fan-in. This lower bound in
turn establishes that it takes Q(n + (n/m)log, n) steps to route a
recursively decomposed three-stage Clos network, if its subnetworks
are routed in sequence, and Q(log, n log, n) steps if they are routed
in parallel. (These bounds are given in greater detail in Section V.)

It is worthwhile to contrast the information complexity of routing
Clos networks with the information complexity of routing other
networks, in particular, self-routing networks. First, we note that the
information complexity of routing a self-routing network is never
greater than the maximum number of inputs that can reach a switch
in that network. For example, the information complexity of routing
the first stage of a unique-path network such as those described in
[20] is one since it suffices to examine a single bit of one input
of each first-stage switch to determine its setting. When operated
as a self-routing network, the information complexity of routing the
first stage of the BeneS network is two, since it suffices to examine
either one or two inputs to determine the mapping of either input of
any switch in that stage [25], [29]. It should be noted that, unlike
Clos networks, unique-path and BeneS networks (in self-routing
mode) cannot realize all permutations 1251, 1291. On the other hand,
Batcher's sorting networks [4] can route all permutations, and the
information complexity of routing their first stage is only two. The

'In expressing complexities, we use the standard complexity notations 0,
R, and 0; see [I71 for definitions.

2Here, the fan-in of an implementation of a routing algorithm refers to
the maximum number of inputs each elementary device can have in that
implementation.

Fig. 1. A 9-input Clos permutation network.

tradeoff in this case is hardware cost; Batcher sorters use @(nlog2 n)
switches whereas Clos networks can be minimized to have O (n log n)
switches.

In all three networks, the fact that the information complexity of
routing the first stage is a constant and also that these networks have
a recursive structure explain why, they are very easy to route. In
contrast, the main result of this paper shows that the information
complexity of routing the first stage (as well as the second and third
stages) of a Clos network is about as large as the number of inputs to
the network, and this explains why these networks cannot be routed
as they are traversed.

The remainder of the paper is organized as follows. Section 11
states preliminary facts needed in subsequent sections. Section III
introduces the notions of multiloops and balanced multiloops, and
Section IV uses these to obtain the claimed information complexity
lower bound. Section V uses this lower bound to determine the time
complexities of various routing schemes for Clos networks. In Section
VI extant routing algorithms are compared to the bounds. The paper
is concluded in Section VII.

II. PRELIMINARY FACTS

A three-stage Clos network will be defined in terms of two
parameters, m and k where m is the number of inputs to each of the
switches in the outer stages, and k is the number of inputs to each of
the switches in the center stage [8], [SI. The total number of inputs
(outputs) to the network is mk and will be denoted by n. Note that k
is also the number of switches in each of the outer stages while m is
also the number of switches in the center stage. The interconnections
between consecutive stages are such that there exists exactly one link
between every center- and outer-stage switch. For example, a Clos
network appears in Fig. 1 for n = 9, and m = k = 3.

Input and output terminals to the network will be labeled by pairs
(i , j) ; 0 5 i 5 IC - 1, 0 5 j 5 m - 1 where (i, j) denotes the j t h
input or output (depending on context) of switch i. A permutation
A to be realized by the network will be specified in the form of
[(i, j) , ~ (i , j)] , 0 5 i 5 k - 1, 0 5 j 5 m - 1 where ~ (i , j) is
the output to which input (i, j) is mapped. When we do not wish
to emphasize to which switches inputs or outputs belong, we will
denote them by integers 0, 1,. . . , n - 1 and express A as [i, a(i)] ,
0 5 i 5 n - 1. Permutations for the input, center, and output stages
will be denoted by A I , AM, TO, respectively.

Our model of routing a Clos network, to be called a muter, will
be a black box that receives a permutation A in the form of a set
of assignments and returns a set of settings for the switches in the
network so as to realize A. These settings, for each stage of the
network, may be viewed as a permutation A., s E {I, M, 0). For a
fixed z, a,, and s, A.(z, y) specifies the image of input y of switch
z in stage s, i.e., the output of switch z in stage s to which its input
a, is mapped.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 19%

In determining switch settings, we will be interested only in the
minimum number of assignments that the router must use, i.e., the
information complexity of setting switches, rather than the actual
computation that the router engages in to determine the settings. Once
such an information lower bound is obtained then the structure of the
router can be brought to bear on that bound to determine a lower
bound on its routing time.

The information bound on routing a three-stage Clos network will
be derived by finding dependencies between assignments in x and
settings in permutations xg .

Dejinition I: ”bo permutations RI and xz are said to differ on a
set of inputs if their assignments on those inputs are different. For
example, xi = [0, 41, 11, 31, 12, 11, [3, 21, 14, 51, 15, 01 and =z =
[0, 41, [l, 31, [2, 11, [3, 21, [4, 01, [5, 51 differ on inputs 4 and 5 . 0

Definition 2: Let x be a permutation to be realized by a Clos
network and A be a subset of inputs of stage s E {I, M , 0). Define
VA(X, s) to be the set of all mappings of the subset of inputs A of
stage s which do not prevent the Clos network from realizing x . 0

The set VA(X, s) will be used to define the dependencies between
the assignments in x and settings in x s .

DeJinition 3: Let A be a set of assignments and let A and s
be defined as above. The mappings of inputs in A are said to be
dependent upon A (briefly, A depends on A) if there exist two
permutations xl and 7r2 which differ only in inputs which appear
in the assignments that belong to A and such that VA(TI, s) n

the router must provide
different mappings for the inputs in A under x1 and xz if the network
is to be set up properly. To distinguish x l and xz the router must
examine the assignments in A. That is, if A depends upon A, a
router which computes A must base its computation on the part of
the permutation specified by A.

Although dependencies are defined above for a set of assignments,
it will be useful to define them for an individual assignment. This
cannot be done directly using the above definition because the
permutations R I and xz cannot be found when A contains exactly
one element, since if two permutations differ they must differ in at
least two places. Despite this fact, the dependency of a switch setting
on a subset of assignments can be inferred indirectly as stated in the
following.

Proposition I: If the mappings for a set of inputs A of a set of
switches depend upon a set of assignments A, then they depend on
at least one of the assignments in A. o

The set A may depend on A without having to depend on all the
assignments in A. That is, we may have two permutations x l and xz
which differ only on assignments in A and for which the mappings
of the inputs in A may be disjoint, but no two such permutations may
exist for some subset of A. The following results establish that, under
certain conditions, we may determine the number of “element-wise”
dependencies from “subset-wise” dependencies.

Lemma I: If the mappings for a set of inputs A of a set of switches
depend upon all subsets of assignments of cardinality T of a set of
assignments A then they depend upon at least IAI -T +1 assignments.

Proof: The largest set of assignments which A could not depend
on, consistent with the Lemma, is one with cardinality r - 1, so A

0
Lemma 2: Given an input 6 of a switch and z disjoint sets of

assignments Ao, A I , . . . , A,-1, if the mapping of 6 depends upon
A, U A, for all 0 5 i < j < H then it depends upon either all, or
all but one of the A,.

Proof: Suppose the mapping of 6 does not depend on one of
the sets, say Ao. Then it must depend on A,; 1 5 i 5 z - 1 since it

0

vA(T2, 8) = 4- 0
Because V A (T ~ , s) n VA(XZ, s) =

depends on at least IAl - r + 1 assignments.

depends on AO U A, for all i ; 1 5 i 5 z - 1.

These facts, combined with the results of Section 111, will be used
in Section N to find the minimum number of assignments necessary
to determine the stage settings for a three-stage Clos network for some
permutations. Once the dependencies are determined the lower bound
on the time it takes to route a 3-stage Clos network immediately
follows.

m. PERMUTATIONS AS MULTIGRAPHS AND MULXIL00P.S

To find the dependencies, permutations with special properties will
be described. These permutations will be represented as bipartite
multigraphs. Let z k = (0, 1,. . . , k - 1). w e shall write (I, M , 0)
to denote a bipartite multigraph with two disjoint sets of vertices,
I = z k , and o = z k , and a mu~tiset~ of edges M c (I x O)m
connecting the two sets of vertices where (I x O)m is a multiset
containing I x 0 m times. The elements in I will be referred to as
leji vertices, and represent the input-stage switches while the elements
in 0 will be referred to as right vertices and represent the output-
stage switches. An edge between left vertex i and right vertex j will
be denoted by [i, j]. For each permutation x , the set M contains r
edges [i, j] iff x (i , z) = (j , y) for exactly r distinct pairs of integers
(5, y) where 2 (y) is an input (output) of switch i (j) in the input
(output) stage.

Thus, when a left vertex i is connected to a right vertex j by
r edges the connection represented has exactly T inputs which are
mapped from input-stage switch i to output-stage switch j under the
corresponding permutation. Each (2, y) pair specifies an input z of
input stage switch i which is connected to output y of output stage
switch j . Furthermore, it can be shown that for any given m and
k , the bipartite multigraph representation of each permutation for an
n-input Clos network is unique, while many permutations can have
the same bipartite multigraph representation.

For any given permutation, the permutations for the center stage
of a Clos network that result in the realization of that permutation
can be identified by m-edge-colorings of its corresponding bipartite
multigraph. A bipartite multigraph is said to be m-edge-colored if
its edges are colored such that no two edges of the same color are
incident on the same vertex and exactly m colors are used. It is well
known that m colors suffice to edge-color a bipartite multigraph of
degree m [l l] .

Furthermore, it is well known that there is a correspondence
between an m-edge-coloring of a bipartite multigraph representing
a permutation x for a Clos network, and the center-stage permutation
x , ~ . (See [21], [24] for an early application and [7] for a thorough
treatment.) An example is depicted in Fig. 2 for a Clos network with
m = 2, k = 4. Edges between left and right vertices that are labeled
with color 0 are assigned to the upper switch in the center stage, and
those colored with 1 are assigned to the lower switch.

In order to exhibit the dependencies of the permutations of the
center-stage switches on the permutations to be realized by a Clos
network we need to consider m-edge-colorings of the bipartite multi-
graph representations of certain permutations. These permutations
will be identified by some particular subgraphs which we shall refer
to as balanced multiloops. We will show that these subgraphs can
be edge-colored only two different ways. This fact will then later be
used in Section IV in the construction of dependencies between the
inputs and outputs of a router for three-stage Clos networks.

Definition 4: A bipartite multigraph, (I, M , 0), is a multiloop of
size 1 if III = E = 10) and, if, when multiple edges between pairs of
vertices are taken as one, the graph consists of a single loop. 0

3A multiset is a set that may contain multiple copies of a single element,
for example, { a , a , b, c } .

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994 281

Fig. 4. Examples of unmixed and mixed colorings of a multiloop.

Fig. 2. A bicolored bipartite multigraph and corresponding Clos network.

Fig. 3. Examples of multiloops shown in heavy lines form = 2 and IC = 4.

Dejnition 5: A bipartite multigraph, (I, M, 0), contains a mul-
tiloop of size E if there exists IL e I, OL e 0, and ML = {[z, y] I
z E IL , y E O L , [z, y] E M} such that I IL~ = I = 10~1 and the

0
Definition 6: A multiloop (I L , ML, O L) is called balanced if it

is regular with degree m and for all pairs [i , j] , i E IL and j E OL,
ML contains either no edges or exactly m12 edges between vertex i
and vertex j . That is to say, every pair of vertices which are connected

0
Examples of ordinary (i.e., not balanced) and balanced multiloops

are given in Fig. 3 for a Clos network with m = k = 4 where
the heavy lines represent the edges in the loops. In both loops,

When a bipartite multigraph is m-edge-colored, it induces an m-
edge-coloring on any of its multiloops. For example, when the graphs
in Fig. 3 are colored, each of the multiloops ends up having an
edge-coloring with four colors. In general, a multiloop of a bipartite
multigraph of degree m can be edge-colored by using m colors, and
no less since the degree of each vertex in any such loop is m. There
exists a bijective mapping between these m colors and the m center-
stage switches of the corresponding Clos network in that all the edges
in a multiloop with the same color are mapped to the same center-
stage switches. Obviously, this mapping is not unique, as the colors
can be mapped to the switches in any one of m! ways. In the case

graph (IL, ML, O L) is a multiloop.

are connected by m12 edges.

I L = (1, 2, 3}, OL = (0, 1, 2).

of balanced multiloops, however, the number of such maps can be
reduced to two cases as argued below.

Definition 7: Divide the set of m colors assigned to
the edges of a multiloop into two sets of colors; shades
of blue, SB = {bo, b l , . . . ,bm/z-l} , and shades of red,
SR = {TO, T I , . . . , ~ , p - ~ } . An m edge-coloring of a multiloop is
said to be unmixed if the edges between any two vertices receive
colors from SR or from SB but not both. Otherwise, it is called
mixed. 0

Examples of unmixed and mixed edge-colorings of a multiloop
are shown in Fig. 4. It can be seen that in the unmixed coloring, the
edges (whenever they exist) between a left vertex and right vertex
are colored either with shades of red, i.e., TO and T I , or shades of
blue, i.e., bo, and b l . On the other hand, the mixed coloring does not
follow this convention as can be seen in Fig. 4@).

Lemma 3: A balanced multiloop can have exactly two unmixed
m edge-colorings when edges between a pair of vertices are not
considered distinct. 0

Iv. CONSTRUCTION OF DEPENDENCIES
We proceed by constructing two permutations based on two

balanced multiloops.
Dehition 8: Let there be two sets of four vertices

{MO, 211, W , w3} I, and {VO, 0 1 , VZ, 03) 0 where I
and 0 are two k-sets of vertices. We construct two multiloops
(IioOp, Mioop, OioOp) and (IioOp, M:oop, OioOp) such that

Iloop = {MO, U l , u2, u 3 } c I ,

where [U , 0Iml2 denotes “edge [U , 01 repeated m/2 times.”
A permutation whose bipartite multigraph (I, M, 0) has
(hoop, Mioopr Oloop) as a subgraph is denoted nloop. Similarly,
a permutation whose bipartite multigraph (I, M, 0) has
(Iioop, hf~oop, oioop) as a subgraph is denoted n{oop. The
subgraphs of these permutations will be referred to as loops.

Obviously this extension is not unique, and many permutations
can be constructed this way. The two permutations are similar in
two respects. Their bipartite multigraph representations both have

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1. JANUARY 1994

the same left and right vertices and most edges in common: The only
difference is that MloOp contains edges [UI, vl]m/2 and [us, voIm/'
which Mioop does not and contains edges [U Z , vl]m/z and
[UI, v ~] ~ / ' which Mloop does not. Finally, the two permutations
contain balanced multiloops of size 4.

By Lemma 3 each of these loops can be edge-colored using shades
of two colors in exactly two ways. Table I lists the correct mappings
for inputs uo and uz of a center-stage switch c under AM that can
route ~l~~~ and A ; ~ , ~ . Here, T indicates that the edges between
vertices uo and W O are colored with colors from SR and b indicates
that these same edges are colored with colors from SB. AM(C, UO)
denotes the output of switch c to which AM maps input uo of that
switch. AM(C, UZ) is similarly defined. We also emphasize that output
c of input stage switch uz connects to input U= of center-stage switch
c; similarly, output wy of center-stage switch c connects to input c of
output-stage switch vy for all e, y E z k . (see Table I.)

Suppose A = {(c, UO), (c, UZ)}. Then the possible mappings
for the inputs in A under ~l~~~ and A [~ ~ ~ are V A (A I ~ ~ ~ , A M) =
{[(c, vo), (c, vz)], [(c, vi), (c, w)]}, and v ~ (~ i ~ ~ ~ , A M) =
{ [(c , WO), (c, v3)1, [(c, vi), (C Y vz)]). Let U,, = {(uz, j) I
j E Z,} be the set of inputs of input-stage switch ut. Since
VA (~ i ~ ~ ~ , AM) n VA (T [~ ~ ~ , A M) = 4, and AI^^^ and differ
only on assignments in sets U,, and U,,, by Definition 3, we
conclude that mappings for the inputs in A must depend on
assignments in U,, U U,,.

Theorem I: For all distinct UO, U I , UZ, u3 E Zk and c E z,,
mappings for inputs (c, UO), (c, U Z) of the center-stage switch c
depend upon assignments for inputs in U", U UuQ,

Now, consider a family of loop permutations ~l~~~ and H { ~ ~ ~ in
which uo and uz are the same in each permutation, but where u1
and u3 can take on arbitrary values. Regardless of how u1 and u3
are chosen, VA AI^^^, AM) n VA (A { ~ ~ ~ , A M) = 4, whence

Theorem2: For d l distinct UO, uz E z k and c E z,, the
mappings for inputs (c, UO), (c, UZ) depend upon the assignments
in each of at least k - 3 of U,, i E Zk\{UO, UZ}.

Proof: For UO, uz E z k , choose u1, 113 E &\{uo, UZ}.

Construct moOp and T:, ,~ from these values. By Lemma 2 and
0

Theorem 3: For d l distinct UO, u2 E z k and c E z,, mappings
for inputs (c, UO), (c, UZ) in AM depend upon at least (k - 3) (m / 2 +
1) assignments.

Proof: If A = {(c, UO), (c, UZ)} depends on assignments on
U,, then it must depend on assignments on every subset of mi2
elements in U, since, for every m / 2 elements chosen out of Ut, we
can define two permutations (by appropriate choice of SR and SB)
which conform to the structure of ~l~~~ and A { ~ , ~ . Therefore, by
Lemma 1, there are at most m / 2 - 1 assignments A does not depend
upon. Combining this fact with'Theorem 2 we conclude that there
are (k - 3) (m / 2 + 1) assignments which A depends upon. 0

Note that A contains two elements. Since it cannot be determined
which of the two elements depend upon which assignments, the
assignments must be divided evenly, to have a correct (worst case)
lower bound on the number of dependencies. Thus, a setting in AM

Theorem 1 the k - 3 dependencies are obtained.

depends upon at least (k - 3) (m / 2 + 1) / 2 = (k - 3) (m + 2) / 4
assignments.

Although the dependencies were derived for the settings of the
center stage switches, they apply to all stages. That is, permutations
 AI^^^ and A { ~ ~ ~ induce disjoint settings in input-stage switches uo
and uz and output-stage switches vz and w3, so that the same
dependencies apply.

The result just derived does not hold for Clos networks with k 5 3.
This is because we cannot form balanced loops when k 5 3 . To find
dependencies in these networks consider a router, this time, for the
input-stage switches, and consider the mapping of input (e, y), i.e.,
input y of switch c in the input stage. This result will be derived for
a Clos network in which switch 0 in the input stage is fixed in the
identity state. It has been shown that such networks can realize all
permutation connections [3 1 I.

Theor.": The mapping of input (e, y) depends upon at least
m - 1 assignments.

Pro03 Construct two permutations A and A' in the following
way:

(0, i) 0 5 i < z

z < i < m

(0, i) 0 5 i < w
4 x 7 Y) = (0, 21,

7r ' (O , i) = (0, i) w < i < z
(0 , w) i = z I (0 , i) z < i < m

A f (Z , Y) = (0 , .)

~ (0 , i) = (1, 0) i = z

(0, i) {
(1 , O) i = w

where w, y, z E Z,, such that w # z , and x # 0, and where
unspecified, assignments are identical in A and T' . Permutations x
and n' differ only in inputs (0, w) and (0, z). With permutation A,
the only path from input-stage switch e to output-stage switch 0 is
through center-stage switch z. With permutation A' the only path
from input-stage switch e to output-stage switch 0 is through center-
stage switch tu. Therefore, the mapping of input (e, y) in AI must
be different under permutations A and A', and consequently, depends
on assignments for inputs (0, w) and (0, z) . But, since .z and w can
take on all unequal pairs of values, by Lemma 1 the mapping of input

0
Combining Theorem 3 and Theorem 4, we conclude the following.
Corolluly 1: The information complexity of routing an n-input

Closnetworkis (k - 2) (n / k + 2) / 4 , for all k 2 4, and it is (n / k) - 1
for k 5 3. Furthermore, if the fan-in of the devices used in a router
to route an n-input Clos network is no more than w then it takes
R(logw n) time to compute the switch settings in that network. 0

(x, y) depends upon at least m - 2 + 1 = m - 1 inputs.

v. ROUTING COMPLEXITY OF &.CURSIVELY
DECOMPOSED CLOS NETWORKS

With the lower time bounds established in the preceding section,
we can now bound the time of routing a recursively decomposed Clos
network. This bound depends on how the switches in the center stage
are routed as well as on how much time we allocate to routing the
remainder of the network.

In a recursively decomposed Clos network, some switches are
implemented as smaller Clos subnetworks. Particularly, switches
below a certain size are directly implemented using crossbar switches.
Larger switches are realized by smaller Clos networks, called sub-
networks in this context. For example, a 2"-input Bene8 network is
a recursively decomposed Clos network with m = 2; the value of
k varies with the level of recursion. If k = 2l-l then I = s at the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994 283

TABLE I l l

Routing Network Level Total Maximum Time
Algorithm bpes Time lime Condition

Lower Bound 2 5 m 5 n log, n w g , n log, n) m = 2

Lev et al. m, power of 2 log m log n @(log2 n + IogmIog(n/m2)) m = no 25

Nassimi and Sahni m = 2 log n Q(log’ n) -

m =
n((1 /IS)+ d3m Lev et al. 2 5 m 5 n log m log’ n @(log’ nlogn2m3 + log2 mlog(n/m6))

TABLE II
Routing Recurrence Routing Time

Lower Bound Scheme Relation

R-sequentiallL- T, = mTn/, + cn n(nlog, n)
sequential
R-paralleYL-sequential Tn = Tnlm + cn O(n)
R-sequentiaVL-parallel Tn = w n + (n/m) log, n)

. mT,/, + clog, n
R-paralleYL-parallel Tn = Tn/,,, +clogw n R(log, nlog, n)

top level, 1 = s - 1 at the second level of recursion, and so on.
The input and output stage switches are directly implemented using
crossbar switches, while each of the two center stage switches are
implemented as 2’-’-input BeneS networks at level 1.

Routers for recursively decomposed networks can be specified
in a recursive fashion: the input to the router is the permutation
the network is to realize; the router generates the setting for each
of the switches, and is invoked recursively for the settings of the
subnetworks. To route the subnetworks, i.e., to find their settings,
we can proceed in at least one of two ways: either set all the
subnetworks in the center in parallel, or set them one at a time in
some predetermined sequential order. We will refer to these cases as
R-parallel and R-sequential schemes in that order. It is possible to
use other routing schemes, e.g., set the first half of subnetworks in
parallel, and then set the second half in parallel, etc. Even though
these intermediate schemes may provide further insight on routing
recursively decomposed Clos networks, here we are interested in
bounds on routing complexity, and therefore will restrict our focus
to R-parallel and R-sequential schemes.

As for routing each level, i.e., deciding the settings of the switches
at each level, we may proceed in two different ways. Any sequential
routing scheme can be seen to require O (n) time (reading in the
permutation to be realized will take O (n) time) while the lower bound
of the previous section indicates that any parallel scheme on a router
with fan-in w takes R(log, n) time. Routing schemes which confirm
to these lower bounds will, respectively, be referred to as L-parallel
and L-sequential schemes.

Table II lists the four routing schemes which are formed by
combining the recursion and level choices. The first column lists the
possible choices, the entries in the second column are the recurrence
relations corresponding to these choices, and those in the third column
are execution time complexities for the four routing schemes. The
variable c in the recurrences is a constant. The derivations of these
expressions from the recurrences are straightforward and omitted
here.

It is seen that any R-sequentiaYL-sequential routing scheme re-
quires fl(n log, n) time. When m = 2 this reduces to fl(n logn),
and when m = n/2 it reduces to O(n) . The first case characterizes
networks with small switches in their outer stages such as the BeneS
network [51, while the second case characterizes networks with large

switches in their outer stages such as the complementary BeneS
network [7]. On the other hand, any R-paralleYL-sequential scheme
requires O (n) time, for all integral m , 2 5 m 5 n.

As for the last two routing schemes, it follows from the table
that any R-sequentiaVL-parallel scheme takes fl(n) time when m =
O(n) and fl(nlog,n) time when m = O(1). Furthermore, any
R-paralleYL-parallel scheme needs fl(log, n log, n) time which
reduces to O(1og;n) when w = @(m).

VI. COMPARISONS
In this section the lower bounds on the routing time of Clos

networks will be compared to the routing times of existing algorithms
with and without recursive decomposition. The time complexities of
the existing routing algorithms match the lower bounds for the cases
of m = 2 and k = 2, but for intermediate values of m and k,
the time complexity of known algorithms is higher. This discrepancy
is not surprising, as will be explained below, but also hints of the
existence of faster algorithms.

First, consider routing three-stage Clos networks without recursive
decomposition. For m = 2, the fastest algorithm has O(1ogn) time
complexity [24], matching the lower bound given in Corollary 1 with
w = O(1). For larger m there are algorithms with time complexity
O(logm1ogn) when m is a power of 2 and @(logmlog2 n)
otherwise [21]. Here, the known algorithms take more time than their
m = 2 and k = 2 counterparts, while the bound is lower. The reason
that the known algorithms take longer when m > 2 is because they
treat the Clos network as a BeneS network; they are iterated @(log m)
times, each subsequent call routes a lower level in R-parallel fashion.

When m > 2, a faster algorithm might avoid iteration even though
it at first seems that there is an as yet undiscovered reason why this
cannot be done. However, the existence of a bound-matching routing
procedure for Clos networks with m = n/2 suggests otherwise.
A Clos network with m = n / 2 can be routed in @(SO(n /2))
time where SO(n/2) is the execution time of an n/2 item sorting
algorithm [19]. Using the AKS sorting algorithm [l] one can then
set up the network in @(logn) time, which matches the bound in
Corollary 1 and suggests that iteration is not necessary.

These observations can be extended to recursively decomposed
Clos networks. Table III shows the lower bound for any R-paralleYL-
parallel routing scheme for a Clos network, and the time complexities
of the best known routing algorithms in this case. The parameter
m is of particular interest because network cost increases with
increasing m while the number of switches between an input and
output decreases with increasing m. Because of m’s importance the
table includes the value of m in the interval 2 5 m 5 n which would
yield the maximum routing time. The complexities and maxima were
obtained from solutions of the recurrence

where L(n) is the expression in the table’s “Level Time” column.
If a level of a Clos network could be routed in O(1ogn) time, the

entire network could be routed in @(log, n logw n) time using an

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

284 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 1, JANUARY 1994

L-paralleVR-parallel algorithm. This bound is achieved with m = 2
and w = 0 (1) using the algorithm of Nassimi and Sahni [24] and
Lev et al. [21]. With larger m, the bound on time drops; this occurs
both at a single level and for the entire network; the routing time
bound is at a maximum when m = 2. As with the single level case,
the routing time of the known algorithms for recursively decomposed
Clos networks is greater than the bound by a logarithmic factor when
m = O(n) and is a power of two and by a log squared factor
otherwise.

Consider the Lev et al.’s algorithm when m is a power of two. AS
can be verified from Table 111, the time complexity of this algorithm
is O(log2n) for any m which is a power of 2, while the lower
bound does not rule out the possibility of a O(1ogn)-time algorithm.
As stated above, the only value of m for which this lower bound is
attainable is n/2. This is achieved by using the sorting-based routing
algorithm [19] with its sorting steps realized by the AKS sorting
network. Given that the AKS sorting network remains impractical,
a Batcher odd-even merge or bitonic sorter [4] can be used to
implement the sorting steps of this algorithm, in which case a routing
time of @(log2 n) can be achieved as with Lev et al.’s algorithm.

Finally, Lev er al.’s algorithm exhibits an even higher order of
routing time complexity when 2 5 m 5 n as manifested by the
expression in the last row. A faster CIos network routing algorithm for
intermediate values of m should prove useful. Although recursively
decomposed Clos networks for m = 2 have fewer crosspoints [5] the
cost may be smaller for other values of m, when additional factors
such as the overhead of implementing a cell of any size, the cost of
interstage links, etc., are taken into account. Thus, there is a need for
fast routing algorithms for Clos networks with other values of m.

VII. CONCLUDING REMARKS
The paper has presented lower bounds on the routing time of

Clos networks. It has been shown that, when k > 3, at least
(k-3) (m/2+1) /2 assignments in the permutation to be routed must
be examined in order to compute the switch settings of a Clos network
with k input-stage switches, each encompassing m inputs. It has
additionally been shown that, when k 5 3, at least m - 1 assignments
in the permutation to be routed must be examined in order to compute
the switch settings of the same network. Combining these results with
a simple fan-in argument then gives sl(log, n) bound on the routing
time of a three-stage Clos network on any w fan-in limited routing
model. Implications of this bound were considered for recursively
decomposed Clos networks with respect to four routing schemes.

ACKNOWLEDGMENT

The authors thank all three reviewers for their careful reading of
the paper and constructive suggestions.

REFERENCES

M. Ajtai, J. Komlbs, and E. Szemeredi, “Sorting in clogn steps,”
Combinatorica, vol. 3, pp. 1-19, 1983.
S. Andresen, “The looping algorithm extended to base 2t rearrange-
able switching networks,” IEEE Trans. Commun., vol. COM-20, pp.

L. A. Bassalygo and V. I. Neiman, “On two control algorithms for
rearrangeable switching networks,” in Proc. 10th In?. Teletru# Congr.,
Monterey, CA, 1983, pp. 5.1:7/1-5.1:7/7.
K. E. Batcher, “Sorting networks and their applications,” AHPS, Spring
Joint Comp. Con$, 1968, pp. 307-314.
V. E. Benes, “Optimal rearrangeable multistage connecting networks,”
Bell Syst. Tech. J., vol. 43, no. 4, pp. 1641-1656, July 1964.
G. Broomell and J. R. Heath, “Classification categories and historical
development of circuit switching topologies,” ACM Compur. Sum.. vol.
15, no. 2, pp. 95-133, June 1983.

1057-1063, 1977.

J. D. Carpinelli and A. Y. Orug, “Applications of edge coloring
algorithms to routing in parallel computers,” in Proc. 3rd Int. Con$
Supercomput.. Boston, MA, 1988, vol. III, pp. 249-257.
C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech.
J., vol. 32, no. 2, pp. 406-424, Mar. 1953.
R. Cole and J. Hopcroft, “On edge-coloring bipartite graphs,” SIAM J.
Comput., vol. 11, no. 3, pp. 540-546, Aug. 1982.
T.-y. Feng, “A survey of interconnection networks,” IEEE Comput., pp.

S. Florini and R. J. Wilson, Edge-Coloring of Graphs. London, Eng-
land: Pitman, 1977.
H. N. Gabow, “Using Euler partitions to edge color bipartite multi-
graphs,” Inf. J. Comput. Inform. Syst., vol. 5, no. 4, pp. 345-355,
1976.
H. Gabow and 0. Kariv, “Algorithms for edge coloring bipartite graphs
and multigraphs,” SIAM J. Comput., vol. 11, no. 1, pp. 117-129, Feb.
1982.
F. K. Hwang, “Control algorithms for rearrangeable Clos networks,”
IEEE Trans. Commun.. vol. COM-31, pp. 952-954, Aug. 1983.
A. Jajszczyk, “A simple algorithm for the control of rearrangeable
switching networks,” IEEE Trans. Commun., vol. COM-33, pp.
169-171, Feb. 1985.
R. M. Karp and V. Ramachandran, “Parallel algorithms for shared-
memory machines,” in Handbook of Theoretical Compufer Science,
Volume A: Algorithms and Complexity. New York: Elsevier, 1990, pp.
869-941.
D. E. Knuth, “Big omicron and big omega and big theta,” SIGACT
News, vol. 8, pp. 18-24, Apr. 1976.
D. M. Koppelman and A. Y. Orug, “Parallel time complexity of
routing in permutation networks,” in Twenty-Sixth A W Z K Aflerton Con$
C o m u n . , Contr., Comput., Sept. 1988, pp. 981-990.
-, “A self-routing permutation network,” J. Parallel Distrib. Com-
puting, vol. 10, pp. 14&151, 1990.
C. P. Kruskal and M. Snir, “A unified theory of interconnection network
structures,” Theoretical Comput. Sci., vol. 48, pp. 75-94, 1986.
G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm
for routing in permutation networks,” IEEE Trans. Comput., vol. C-30,
pp. 93-100, Feb. 1981.
M. J. Marcus, “The theory of of connecting networks and their com-
plexity: A review,” Pmc. IEEE, vol. 65, pp. 1263-1271, Sept. 1977.
G. M. Masson, G. C. Gingher, and S. Nakamura, “A sampler of circuit
switching networks,” IEEE Comput., vol. 12, pp. 3248, June 1979.
D. Nassimi and S. Sahni, “Parallel algorithms to set up the Benes
permutation networks,” IEEE Trans. Comput., vol. C-31, pp. 148-154,
Feb. 1982.
D. Nassimi and S. Sahni, “A self-routing Benes network and parallel
permutation algorithms,” IEEE Trans. Comput., vol. C-30, pp. 332-340,
May 1981.
V. I. Neiman, “Structure et command optimales de reseaux de connexion
sans blocage,” Ann. Telecommun., vol. 24, pp. 232-238, July-Aug. 1969.
D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable
switching networks, part I: Control algorithms, part II: Enumeration
studies and fault diagnosis,” Bell Syst. Tech. J., vol. 50, no. 5, pp.
1579-1618, May 1971.
N. Pippenger, “Telephone switching networks,” in Proc. Symp. Appf.
Mathemat.. vol. 26, pp. 101-113, May 1982.
C. S. Raghavendra and R. V. Boppana, “On self-routing in Benes
and shuffle-exchange networks,” IEEE Trans. Comput., vol. 40, pp.
1057-1065, Sept. 1991.
C. E. Shannon, “Memory requirements in a telephone exchange,” Bell
Syst. Tech. J., vol. 29, pp. 343-349, 1950.
A. Waksman, “A permutation networks,” J. Assoc. Comput. Machinery,
vol. 15, no. 1, pp. 159-163, Jan. 1968.

12-27, Dec. 1981.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:20 from IEEE Xplore. Restrictions apply.

